
Тема «Квантовые явления»

Выпускник 9 класса должен	
знать	уметь
 корпускулярную и волновую гипотезы о природе света; опыты, доказывающие сложное строение атома; планетарную модель атома; явление радиоактивности; природу альфа-, бета- и гамма-излучения; протонно-нейтронную модель ядра атома; способы составления уравнений ядерных реакций; примеры использования ядерной энергии 	 наблюдать и сравнивать линейчатые спектры; описывать состав атомов и атомных ядер; составлять уравнения ядерных реакций; различать методы регистрации элементарных частиц

Примеры решения задач по теме «Квантовые явления»

Задача 1. Какие частицы, условно изображенные на рисунке, отклоняются вправо в опыте Резерфорда?

Решение: Магнитное поле с силой действует на движущиеся снизу вверх из контейнера заряженные частицы. Чтобы определить направление этой силы, надо применить правило левой руки. Поскольку, силовые линии магнитного поля входят в плоскость рисунка, следовательно, влево отклоняются положительно заряженные частицы (ядра атомов гелия), а вправо отрицательно заряженные частицы (электроны). Не реагируют на магнитное поле незаряженные частицы (потоки фотонов – гамма-квантов). Ответ: электроны.

Задача 2. Опишите состав атома натрия $^{23}_{11}N\alpha$.

Решение: При изучении структуры атомов и ядер принято использовать их обозначение:

$$\frac{A}{Z}X$$

где A — массовое число (число нуклонов — протонов и нейтронов в ядре):

$$A = Z + N$$

Z – зарядовое число (число протонов в ядре или электронов вокруг ядра)

N — число нейтронов в ядре.

Следовательно, в ядре атома натрия содержится A = 23 нуклона, из них Z = 11протонов и N = 12 нейтронов. Так как атом в целом электрически нейтрален, число электронов должно быть равным числу протонов: вокруг ядра обращается 11 электронов. Ответ: 11 протонов, 12 нейтронов, 11 электронов.

Задача 3. За первую минуту распалась половина исходного числа атомов радиоактивного вещества. Какая часть исходного числа атомов распадется через 2 минуты.

Решение: Период полураспада этого вещества равен 1 мин, поскольку период – это промежуток времени, в течение которого распадается половина наличного количества атомов вещества. Через время, равное двум периодам полураспада в образце останется число атомов N:

$$N = \frac{N_0}{2 \cdot 2} = \frac{N_0}{4}$$
 или $\frac{N}{N_0} = \frac{1}{4}$.

Можно сказать, что через 2 минуты останется одна четверть от первоначального числа атомов (или 25 %). Следовательно, за это время распадется три четверти от первоначального числа атомов (75 %).

Ответ: 75 %

Задача 4. Какой элемент образуется после двух последовательных альфараспадов и одного бета-распада из ядра радия $^{224}_{88}Ra?$

Решение: При альфа-распаде образуется новый элемент и альфа-частица (ядро атома гелия):

$$_{Z}^{A}X \rightarrow _{Z-2}^{A-4}Y + _{2}^{4}He$$
.

Следовательно, уравнение радиоактивного распада после двух последовательных альфа-распадов будет иметь вид:

$$^{224}_{88}Ra \rightarrow ^{216}_{84}Y + 2 \cdot ^{4}_{2}He$$
.

Далее происходит бета-распад, который характеризует уравнение:

$$_{Z}^{A}X \rightarrow _{Z+1}^{A}Y + _{-1}^{0}e$$

 $_{Z}^{A}X
ightarrow _{Z+1}^{A}Y + _{-1}^{0}e,$ В этом случае после одно бета-распада образуется новый элемент и выбрасывается электрон:

 $^{216}_{84}Y \rightarrow ^{216}_{85}At + ^{0}_{-1}e$.

Ответ: изотоп астата $^{216}_{85}At$

Задача 5. Напишите уравнение ядерной реакции, происходящей при бора $^{11}_{5}B$ альфа-частицами, бомбардировке ядер которая сопровождается образованием нейтронов. Какой элемент образуется при этом?

Ответ: ${}^{11}_{5}B + {}^{4}_{2}He \rightarrow {}^{14}_{7}O + {}^{1}_{0}n$; изотоп кислорода ${}^{14}_{7}O$.

Задача 6. Сравните возможности счетчика Гейгера и камеры Вильсона при регистрации элементарных частиц.

Ответ: Счетчик Гейгера (рис.1) позволяет регистрировать интенсивность радиоактивного излучения (число частиц в секунду). Камера Вильсона позволяет регистрировать треки (следы) элементарных частиц (рис.2)

Рис. 1

Рис. 2